
Digital Modes II

PSK31 and JT65

Tom Worthington

Maui Amateur Radio Club

October 8, 2014
(PSK31 is from 8/8/2006)

If you want the original pp with notes, email

worth@maui.net

PSK31, the first modern digital mode

• PSK stands for Phase Shift Keying

• PSK31 has a 31 Baud (bits per second) data rate

• Developed in 1998 By Peter Martinez, G3PLX

• Very narrow bandwidth, therefore high power

density

• Keyboard to Keyboard, one keystroke at a time to

mimic a CW QSO (non break-in)

• Like CW, it has no error detection or error correction

Requirements

• SSB Transceiver

– A big antenna is better, but many, world wide, get by

with compromised antennas

• Computer with a sound card

• Cables or interface to connect

• Software – many free programs

– Digipan

– Mixw

– Ham Radio Deluxe

– Fldigi

Advantages

• Very efficient use of bandwidth

• Can easily have 20 – 30 useable channels

in 3000 Hz pass band.

• The software can decode them all

simultaneously

• Most use low power, 20 to 50 Watts

• 20W/31Hz == 2000 W/3000Hz

How does it work?

• Uses a variable length character set

• Like CW, common characters are short, less

common ones are longer

• Lower Case letters are shorter than caps

• 50 words per minute needs a bit rate of about 32

bits per second.

• 31.25 because 8000 Hz/256 = 31.25 was

convenient for the early DSP implementations

Phase Shift Keying

• A phase reversal is like switching the antenna
leads (balanced feed line)

• Or multiplying the signal by -1

• Zero = phase reversal

• One = no phase reversal

• When Idling, send continuous phase
reversals, this allows the receiver to sync his
clock.

• So the transmitter is always on when in
transmit mode.

Phase Shift Keying

PSK31 encode/decode

For the decode to work we need to limit the number of 1’s in a row so

that the PLL doesn’t drift.

The character set is a (1,9) run length limited code

i.e. no more 9 bits with out a phase reversal, but you can have two phase

reversals in a row

Implementation

• All the hard work is done in the sound card

• You type, the software converts this to a digital
stream that goes to the sound card

• Output of the sound card feeds the microphone
input in SSB/USB (always) mode

• The sound card shapes the signal to keep the
bandwidth narrow.

• Speaker output of the transceiver goes to the
microphone input of sound card

• You select the signal and the sound card
decodes the signal

• How can we calculate the bandwidth of a

phase shift modulated signal?

• How can we shape the signal to minimize

the bandwidth?

Making a square wave

Start with sine wave at the

fundamental frequency

Add some third harmonic

And a little 5th harmonic

Phase Shift Modulation

• How can we use what we have learned to

calculate the bandwidth of a phase shift

modulated signal?

• If we wanted to phase shift modulate a carrier at

31.25 Hz (PSK31 idle signal) we could just

multiply the carrier by a square wave at 15.62

Hz

• But we know that a square wave is the sum of a

series of sine waves and we know how to

multiply sine waves

Suppose I have a radio frequency signal:)2sin(ft

Suppose I multiply this signal by another signal:)2sin(tfm

Remember back to taking Trigonometry in High School…..

 )cos()cos(
2

1
sinsin yxyxyx 

 tff m)(2cos   tff m)(2cos 

We get two terms at the sum and difference frequency

Modulation is Multiplication

Lower Sideband Upper Sideband

Phase shift modulation

=

𝑛=1,3,5,…

1

𝑛
∗ sin(2𝜋𝑛 ∗ 15.62 ∗ 𝑡)

The carrier looks like: sin 2𝜋𝑓𝑡

That will give us a series of terms that look like:
1

2

1

𝑛
cos(2𝜋 𝑓 + 𝑛15.6 𝑡) 𝑎𝑛𝑑

1

2

1

𝑛
cos(2𝜋 𝑓 − 𝑛15.6 𝑡)

So there will be lots of harmonics, but we can suppress harmonics if

instead we multiply by just the first term.

That has the effect of bringing the amplitude to zero before

reversing the phase

0 0 1 0 0 0

PSK31 Phase Reversal

• If we didn’t shape, i.e. reduce the amplitude to

zero first, we would generate lots of harmonics

• If your transmitter is linear, you signal will be

down 20 dB at ± 25 Hz

• Run low power, well below the point where you

get an ALC indication, typically 30-50 Watts max

• If your signal is too wide people will let you know

Summary

• PSK31 (BPSK31, PSK63, QSK31….) is a

simple, low power capable, narrow, cheap,

popular …. HF mode

What about errors?

• In SSB and CW, and PSK31 we deal with

errors by repeating

• CQ CQ CQ de NH6Y NH6Y NH6Y K

• AGN? AGN?

• Can we do better?

Error Detection and Error Correction

• Parity – add one bit that is the sum, base 2

of the bits in the word.

– Detects all single bit errors

– No correction

– Can’t detect all multiple bit errors

• Add more bits to detect multiple bit errors

– Hash codes or checksums

• Ask for a retransmission, AGN? AGN?

History (from Wikipedia)

The most famous early systematic use of error detection was

by Jewish scribes in the precise copying of the Torah.

An emphasis on minute details of words and spellings

evolved into the idea of a perfect text in 135 CE, and with it

increasingly forceful strictures that a deviation in even a

single letter would make a Torah scroll invalid.[1][2] The

scribes used methods such as summing the number of

words per line and per page (Numerical Masorah), and

checking the middle paragraph, word and letter against the

original. The page was thrown out if a single mistake was

found, and three mistakes on a single page would result in

the entire manuscript being destroyed (the equivalent of

retransmission on a telecommunications channel). The

effectiveness of their methods was verified by the accuracy

of copying through the centuries demonstrated by discovery

of the Dead Sea Scrolls in 1947–1956, dating from c.150

BCE-75 CE.[3]

http://en.wikipedia.org/wiki/Error_detection_and_correction#cite_note-1
http://en.wikipedia.org/wiki/Error_detection_and_correction#cite_note-2
http://en.wikipedia.org/wiki/Masoretic_text#Numerical_Masorah
http://en.wikipedia.org/wiki/Dead_Sea_Scrolls
http://en.wikipedia.org/wiki/Error_detection_and_correction#cite_note-3

What about error correction?

• This the field of Information and Coding Theory

• Many techniques have been developed to maximize the

data transmission speed over a noisy channel that

guarantee an acceptable error rate

• A typical error rate might be 1 in 1012 for a hard disk

• An audio CD can correct 4000 missing bits in a row

(scratch)

• The best technique depends on the kind of defects or

noise in the transmission channel

What about Radio Transmission?

• Interference

– Other people talk on top of you

– Nearby signals confuse the receiver

• QSB (fading)

– Signal gets weak for a while

• Static

– Missing signal for a while

• Multipath distortion

– Same signal, but delayed in time

Amateur Modes that use Error Correction

• MT63

• Olivia.

• DominoEX-FEC

• Throb

• JT65

Message

Source
encode

(compaction)

FEC encode
Modulation

Transmission

add noise

Message
Source
Decode

FEC Decode Demodulation

FEC = Forward Error Correction, no reverse channel to ask for repeats

so error correction bits are added to the data stream

JT65

• Developed in 2003 by Joe Taylor, K1JT

• Follow on to WSJT (2001) developed specifically

for EME – Moon bounce

• Slow

• Very structured

• Very good – opened up EME for small stations

- can decode signals with a s/n of -28 dB!

• Extended to HF

Structured Messages

• CQ NH6Y BL10

– Anybody want to talk to Maui?

• NH6Y W1AW FN31

– Please talk to me, I’m in Newington CT

• W1AW NH6Y R-10

– W1AW, I received your location and call sign correctly,

and your signal strength is -10 dB

• NH6Y W1AW R-22

– NH6Y, I correctly received the signal strength you sent,

your signal strength is -22 dB

• W1AW NH6Y RRR

– OK I got that

• NH6Y W1AW 73

– Thanks for the nice qso

Each message takes one

minute to transmit

• The previous QSO took 6 minutes to

complete!

• Transmit for 47 seconds, starting 1

second after the start of the minute.

• Need to synchronize your clock to UTC

Use knowledge of content to reduce

the message length

• JT65 Compresses messages based on knowledge of content

– Call Signs = prefix (1 or 2 characters), then a digit, then a 1 to 3

letter suffix

• = 37 x 36 x 10 x 26 x 27 x 27 = about 262 million possible

call signs

• 228 = 268 million

– Grid Square = 180 x 180 requires 15 bits

• A message has two call signs plus

– Grid square, signal report, CQ, 73, R…

– 72 bits = 28 + 28 + 15 + 1

• Special Event and Portable call can be a problem

– W1AW\KH6 or SI2014ECC for example

– A 13 character arbitrary message can also be sent.

Error Detection/Correction

• Take the 72 bit data and add 306 error

correction bits

• 378/72 = 5.25, so it is sort of like sending the

message 5 times

• Actually much better than that.

• The message is spread out over the 47 seconds

so that if you can copy only a few seconds you

can correctly decode the entire message

• If the message decodes, it is correct

JT65
• Uses Reed-Solomon Polynomials to spread the data

into the entire transmission interval and add error

correction.

– Developed in 1960 at MIT but they didn’t know

how to invert efficiently

– In 1969, Berlekamp and Massey developed a

decoding algorithm

– Used in the Voyager program to transmit images

– Used in CDs and Disk Drives

• The RS Polynomial takes the 72 data bits and

generates a 378 bit message that includes the

error correction data

JT65 Modulation

• 126 time intervals each 0.372 sec long

– Sound card samples 4096 points at 11025

samples/sec in each time slot

• In each time interval the waveform is a constant

amplitude sinusoid at one of 65 pre-defined

frequencies

– Half the slots are used for time synchronization

– The 378 bit word is sent as 63 6 bit symbols

– The sound card matches the phase whenever the

frequency changes to keep the bandwidth small

JT65 Modulation - 2

• Sync tone is 1270.5 Hz

– Sent when sync value is 1

– Absent when sync value is -1

• Other tones are:

1270.5 + 2.6917(n + 2) where 0 ≤ n ≤ 63

In order to decode correctly we need to

accurately synchronize the clocks

The Synchronizing Vector

• Every other time interval is used to send

the synchronizing vector.

• A tone of 1270.5 Hz = 1, no tone for a -1

• The vector used has a very sharp

autocorrelation function that makes it

possible to synchronize the receiver to the

transmitter, i.e. Allows the receiver to know

which data bit is which and to separate the

64 different data tones

Suppose I want to detect the time

that a signal arrives.

Noise can introduce errors, but I

can’t reduce the noise, how can

I do better?

What if I send a sequence of binary signals, either a 1 or a -1 and record the data.

Each separate signal is noisy and therefore the arrival time is uncertain but

If I use the fact that I know what was sent, I can improve my knowledge of the

arrival time.

Slide the received data back and forth, trying all possible arrival times

and compare it with what I know was sent. This is called correlation.

If I choose the sequence well, there will be a distinct peak when they line up.

+1 | +1 | -1

+1 | +1 | -1

+1 | +1 | -1

+1 | +1 | -1

+1 | +1 | -1

+1 | +1 | -1

+1 | +1 | -1

+1 | +1 | -1

+1 | +1 | -1

+1 | +1 | -1

+1 | +1 | -1

+1 | +1 | -1

Consider a sequence +1, +1, -1

Sum = -1

Sum = 0

Sum = 0 Sum = 3

Sum = -1

Sum = 0

The Autocorrelation Function is:…0,0,0,-1,0,3,0,-1,0,0,0…..

This is a Barker Sequence, one of only 4!

Multiply then add, i.e. integrate

Autocorrelation of the

JT65 synchronizing vector

100110001111110101000101100100011100111101101111000110101011

0011010101001000000110000000011010010101010011001001000011

111111

This sequence is called a pseudo random vector, but there is nothing random

about it. It is carefully selected to have the sharpest autocorrelation.

JT65

• Once we synchronize the incoming data…

• Find the time slots corresponding to the data

• Calculate the 6 bit value in each time slot

• String them together to find the 368 bit message.

• Use the Berlekamp/Massey algorithm to correct

errors and generate the 72 bit received message

– Or say we couldn’t decode the message

• Uncompact the 72 bit message to make it

person readable

What if the decode fails?

• If we had a very powerful computer we could try

each of the possible 272 messages and see which

one gives the best fit to the received data

– That is not (yet) possible

• 4.7(10)21 messages

– So keep a list of common call signs, for EME that

is relatively small

– Try messages with your call and those stored

calls and look for good matches

• This is the Deep-Search Decoder

– Provides about 4 dB more sensitivity

JT65 Software

• WSJT-X v1.4 is the current version from

Joe Taylor.

– Supports a new mode, JT9 that has smaller

bandwidth

– Includes Rig interface and logging

– Supports: Windows, Linux and OS X

– Source code available

• JT65-HF is available from SourceForge

RS Coding 0.1
Suppose I want to send 3 numbers a, b, c

Use these three numbers to create a quadratic equation 𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2

We know that three points define a parabola and that given any three points

we can calculate the equation of the parabola that goes thru these points

Instead of sending a, b, c
Send three points that lie on

The curve

So what does that add???

RS Coding 0.2

I can send some extra points

If I send 2𝑠 extra points

I can correct 𝑠 errors

How??

RS Coding 0.3

𝑛 = 𝑘 + 2𝑠

Need to send k numbers,

Add 2s extra points

In our case k = 3, s = 2
And n = 7

Look for a subset of the data with at least k + s points that all lie on the same

Polynomial, in our case a parabola

Since there are at most s errors, and since k points are all that are required to form

a unique polynomial, we can solve for the coefficients of the polynomial and know,

that since at least k of them are not in error, the polynomial is identical to the

original that was sent. Therefore, can calculate the original message

RS Coding 0.4

• Of course it’s just a bit more complicated…..

• To send r symbols, map these symbols to the

coefficients of a polynomial of order r-1

• Can’t use real numbers, and the set of coefficients

must be closed under + x

– (if not you can’t do the arithmetic exactly)

– This is a Galois Field

• JT65 use the RS(63,12) code to encode the 72 bit

message into 63 six bit channel symbols

Digital Modes Conclusions

• Increasingly popular

– Allows qrp operation

– Allows DX with antenna restrictions

– Seeing more Dxpeditions using PSK/JT65

• Unfortunately many stations use macros, i.e. canned

messages

– That’s fine for Contest or DX exchanges but I don’t

want a 500 word resume.

• Automatic Spotting Networks help in finding DX

How can I spread out the data in time?

• Instead of sending each bit sequentially,

transmit all the bits at the same time using

set of signals that are long in time but

distinguishable.

• To do that we need a set of symbols, i.e.

functions, that don’t interfere with each

other.

• These are called orthogonal functions

 𝑓𝑛 𝑡 𝑓𝑚 𝑡 𝑑𝑡 = 0 unless n = m

Sine or Cosine functions will work

If you took calculus, you learned: (right at the end of the second semester)

0

1

sin 2𝜋𝑛𝑡 ∙ sin 2𝜋𝑚𝑡 𝑑𝑡 = 0 𝑢𝑛𝑙𝑒𝑠𝑠 𝑛 = 𝑚

We can use this to spread out our data and then detect it at the other end

For an exercise we will send a 4 bit word, each bit will be represented

by one of 4 basis functions:

sin 2π𝑛𝑡 𝑤ℎ𝑒𝑟𝑒 𝑛 = {1,2,3,4}

Lets transmit 1101 = 13 in decimal or ‘C’ in hex

To decode: Multiply the received signals by each of the basis symbols and add

i.e. integrate

In this case the result is: 50, 50, 0, 50, so it’s easy to tell 1’s form 0’s

but we don’t have any noise.

1101 plus noise

Sums: 47.7, 47.7, -2.5, 47.7 so it is still easy to decode

How about some data loss?

Sums: 56, 37,18, 31

Now it is getting harder to distinguish between 0 and 1

